Films of Poly (L - Lactic Acid) / Poly(Hydroxybutyrate-Co-Hydroxyvalerate) Blends: In vitro Degradation
نویسندگان
چکیده
Biocompatible and biodegradable polymers have been studied in the last few years with good clinical success in the fixation and stabilization of bone fractures. The understanding and the control of the polymeric prosthetic degradation process and the effect of its degradation products in the organism are crucial for the success of the implant. In this present work, blends of PLLA/PHBV, obtained in several compositions by casting of solvent, obtaining samples in the form of films. The samples were characterized by the analysis of TGA, DSC, DMA and SEM. The results obtained showed that the PLLA/PHBV blends are immiscible, and present a discrete separation by microscopy. The blends obtained showed porous fracture surfaces. It is noticed that PLLA begins its degradation in a few weeks (around 2 weeks), unlike PHBV, where it was possible to observe eventual degradation up to 53 weeks. It was also observed that the blend increased its crystallinity with degradation.
منابع مشابه
Single crystal morphologies of biodegradable aliphatic polyesters
Single crystals of biodegradable aliphatic polyesters, poly([R]-3-hydroxybutyrate), poly([R]-3-hydroxyvalerate), poly(L-lactic acid), poly( -propiolactone), poly(4-hydroxybutyrate), poly(Æ-valerolactone), poly("caprolactone), poly(ethylene succinate) and poly(tetramethylene adipate), were grown from dilute solution by isothermal crystallization, and the crystal structures and morphologies were ...
متن کاملAdsorption of Human Immunoglobulin G to Poly (β-hydroxybutyrate) (phb), Poly (l- Lactic Acid) (plla) and Phb/plla Blends
Biodegradable polymeric materials can be used as temporary implants and may be able to carry out specific functions for a pre-determined period prior to their degradation in vivo. In order to be used they must present characteristics of biocompatibility. When a material comes into contact with blood, the instantaneous adsorption of protein occurs on its surface. Coverage of the surface by γ-glo...
متن کاملMicrobial degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in soils.
The microbial degradation of tensile test pieces made of poly(3-hydroxybutyrate) [P(3HB)] or a copolymer of 90% 3-hydroxybutyric acid and 10% 3-hydroxyvaleric acid was studied in soils incubated at a constant temperature of 15, 28, or 40 degrees C for up to 200 days. In addition, hydrolytic degradation in sterile buffer at temperatures ranging from 4 to 55 degrees C was monitored for 98 days. D...
متن کاملBiosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer from wild type Comamonas sp. EB172. Abstract Poly(3-hydroxybutyrate) [P(3HB)] homopolymer and poly(3-hydroxybutyrate-co-3-
Poly(3-hydroxybutyrate) [P(3HB)] homopolymer and poly(3-hydroxybutyrate-co-3hydroxyvalerate) [P(3HB-co-3HV)] copolymer was produced by Comamonas sp. EB172 using single and mixture of carbon sources. Poly(3-hydroxyvalerate) P(3HV) incorporation in the copolymer was obtained when propionic and valeric acid was used as precursors. Incorporation of 3HV fractions in the copolymer varied from 45 to 8...
متن کاملMicrobial Degradation Behavior in Seawater of Polyester Blends Containing Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx)
The microbial degradation behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and its compound with several polyesters such as poly(butylene adipate-co-telephtharate) (PBAT), poly(butylene succinate) (PBS), and polylactic acid (PLA) in seawater was tested by a biological oxygen demand (BOD) method. PHBHHx showed excellent biodegradation in seawater in this study. In addition, the...
متن کامل